

Suppose you are a professional mountain biker who is going to do a downhill race on a mountain. The slope of the mountain will smoothly increase your speed, or accelerate you, until you reach the bottom, where your speed is the highest. Sketch a picture of the mountain slope at the top right of this page.

Assume that: 1) the mountain slope is continuous.

- 2) the mountain slope does not have any irregularities that interrupt the flow of time and position.
- 3) there are an infinite number of points available to choose from along the mountain slope.

As a biker races down the mountain, the biker's position with respect to time is modeled by the function:

 $f(t) = -t^2 + 3500$ where *f***(t)** is measured in feet and *t* is measured in seconds.

Answer the following questions and show your work: (Round to nearest tenth. Don't forget units!)

- 1. What is the biker's position at the *top* of the mountain when the race *starts* (at time=0)? Write the ordered pair.
- 2. How many seconds does it take for the biker to get to the *finish* line at the *bottom* (at f(t)=0)? Write the ordered pair.
- 3. What is the average velocity from the beginning of the race to the end of the race? (ft/sec and mi/hr)
- 4. At what time during the race does the biker's *instantaneous velocity* equal this average velocity? Find *f(t)*, also.
- 5. Complete the table and graph.6. Draw the *secant* for average velocity from the race's start to finish & draw the *tangent* for instantaneous velocity that is equal to this average velocity.

3500

t (sec)	f(t)	f'(t) (ft/sec)	(mi/hr)
0			
10			
20			
30			
40			
50			
60			

time (sec)

7. What is the biker's velocity at the finish line? (*ft/sec and mi/hr*)